Вопросы социализма (сборник) - Страница 175


К оглавлению

175

И здесь, в области дедукции, обнаруживается непрерывная и неразрывная цепь развития от элементарно-трудовых организационных приемов до вершин научных методов.

IX

Таково происхождение двух основных, всеобщих методов познания. В их рамках лежит множество методов более частных, специальных, которые применяются в отдельных, более или менее обширных областях науки. Что верно по отношению к общему, то справедливо и по отношению к частному; происхождение этих методов не может быть иным, чем происхождение тех. Прослеживать его по всем наукам здесь нет возможности, ограничусь несколькими типичными иллюстрациями, взятыми из моей прежней работы («Культурные задачи нашего времени», стр. 61–64).

Основу аналитической геометрии составляет, как известно, отнесение пространственных элементов к заранее определенным «системам координат», или взаимно связанных линий, принимаемых неподвижными. В громадном большинстве случаев употребляются либо прямоугольные, либо полярные координаты; т. е. берутся три прямые, сходящиеся в одном центре под прямыми углами между собою; между ними лежат три также взаимно перпендикулярные плоскости, и положение изучаемой точки определяют либо ее расстояниями от каждой из этих плоскостей, либо ее расстоянием по прямой линии от центра и величиною углов, которые эта прямая образует с теми же самыми плоскостями.

Легко заметить, что в трудовой технике система трех прямоугольных координат тысячи миллионов раз осуществлялась раньше того, как ее сделали схемою геометрического исследования. Она в точности воспроизводится каждым углом каждого четырехугольного здания и ящика, следовательно, является прежде всего элементарной схемою построек. А метод полярных координат применялся практически еще первобытным охотником, когда он искал себе дорогу в девственных лесах или степях, ориентируясь по солнцу и звездам. Он инстинктивно определял направления, основываясь на величине углов между своими лучами зрения, обращенными к солнцу, к горизонту, к знакомым звездам, к далеким горам и т. под.; а эти углы геометрически представляют не что иное, как элементы полярных координат.

Аналитическая алгебра основана на исчислении бесконечно малых величин. Понятие о бесконечно малых возникло еще в классической древности; и, однако, античный мир, давший немало гениальных математиков, не создал дифференциального и интегрального исчисления. Почему так случилось? Ближайшую причину отыскать легко: по различным замечаниям древних философов с несомненностью можно видеть, что бесконечно малые, равно как и бесконечно большие, внушали им своеобразное отвращение. Авторитарно-аристократическому миру присуще консервативное направление мысли, тяготеющее к устойчивому, неизменному, неподвижному; а символы «бесконечных» выражают непрерывное движение в ту или иную сторону неограниченный прогресс возрастания величин или углубления в них; чувство противоречия тут являлось вполне естественно. Веке же в XVI, XVII, хотя уважение ученых к древней философии было очень велико, не только исчезло это отвращение, что можно объяснить подрывом феодально-авторитарного строя, а с ним консерватизма жизни и мысли, но оно сменилось величайшим интересом к бесконечно малым и породило новую математику. Откуда же взялся такой интерес?

Идея бесконечно малой имеет своим содержанием, как известно, лишь стремление неограниченно уменьшать какую-либо данную величину. И вот именно с XV–XVI веков такое стремление возникло в самой технической практике и стало чрезвычайно важным для нее. То была эпоха зарождения мировой торговли, опирающейся на океаническое мореплаванье, и эпоха первого распространения мануфактур. Для мореплавания огромное значение приобрела точность ориентировки, для промышленности — точность производства инструментов. Минимальная ошибка в линии курса при путешествиях на тысячи верст по великим водным пустыням угрожала не только усложнением и замедлением трудного пути, но зачастую даже гибелью всей «транспортной мануфактуры» — корабля с его экипажем. Стремление уменьшить эту ошибку до практически ничтожной стало жизненно насущным. В мануфактуре также минимальные ошибки и неточности в инструментах приобрели большое реальное значение благодаря доведенному до высокой степени техническому разделению труда. Если в ремесленной мастерской работнику, выполняющему свое дело при помощи целого ряда различных орудий, приходилось каждым из них делать несколько десятков движений в час, а то и меньше, то в мануфактуре, оперируя все одним и тем же инструментом, рабочий производит с ним тысячи однообразных движений за такое же время. Неуловимая для глаза погрешность в устройстве орудия, оказывая свое влияние тысячи и тысячи раз, производит весьма заметное ухудшение в результатах работы — в количестве продукта, в степени утомления работника и т. д. Всякую неровность и асимметрию инструмента требуется уменьшить насколько это возможно, не удовлетворяясь окончательно никакой достигнутой степенью, т. е. именно требуется сводить к бесконечно малой величине. Понятно, что античное презрительное отношение к бесконечно малым должно было исчезнуть и смениться живым интересом: новые мотивы, чуждые древнему миру, были порождены новой социально-трудовой практикой.

Насколько интенсивен был этот интерес, показывают те огромные усилия, которые тогда делались для созидания мощных увеличивающих инструментов. Приготовлялись неуклюжие астрономические трубы футов во 100 и более длины; а одна из луп Левенгука увеличивала в 2000 раз. Видеть в нее, конечно, нельзя было почти ничего, благодаря темноте поля зрения; и весь тяжелый труд, на нее потраченный, имел, в сущности, лишь символический смысл — выражал стремление, так сказать, глазами уловить бесконечно малые.

175